Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints

نویسندگان

  • Koichi Nabetani
  • Paul Tseng
  • Masao Fukushima
چکیده

We consider the generalized Nash equilibrium problem (GNEP), in which each player’s strategy set may depend on the rivals’ strategies through shared constraints. A practical approach to solving this problem that has received increasing attention lately entails solving a related variational inequality (VI). From the viewpoint of game theory, it is important to find as many GNEs as possible, if not all of them. We propose two types of parametrized VIs related to the GNEP, one pricedirected and the other resource-directed. We show that these parametrized VIs inherit the monotonicity properties of the original VI and, under mild constraint qualifications, their solutions yield all GNEs. We propose strategies to sample in the parameter spaces and show, through numerical experiments on benchmark examples, that the GNEs found by the parametrized VI approaches are widely distributed over the GNE set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method

The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...

متن کامل

Smoothing approach to Nash equilibrium formulations for a class of equilibrium problems with shared complementarity constraints

The equilibrium problem with equilibrium constraints (EPEC) can be looked on as a generalization of Nash equilibrium problem (NEP) and the mathematical program with equilibrium constraints (MPEC) whose constraints contain a parametric variational inequality or complementarity system. In this paper, we particularly consider a special class of EPECs where a common parametric P-matrix linear compl...

متن کامل

On Vector Equilibrium Problem with Generalized Pseudomonotonicity

In this paper, first a short history of the notion of equilibrium problem in Economics and Nash$acute{'}$ game theory is stated. Also the relationship between equilibrium problem among important mathematical problems like optimization problem, nonlinear programming, variational inequality problem, fixed point problem and complementarity problem is given. The concept of generalized pseudomonoton...

متن کامل

The system of generalized vector equilibrium problems with applications

In this paper, we introduce the system of generalized vector equilibrium problems which includes as special cases the system of generalized implicit vector variational inequality problems, the system of generalized vector variational and variational-like inequality problems and the system of vector equilibrium problems. By using a maximal element theorem, we establish existence results for a so...

متن کامل

Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games

The noncooperative multi-leader-follower game can be formulated as a generalized Nash equilibrium problem where each player solves a nonconvex mathematical program with equilibrium constraints. Two major deficiencies exist with such a formulation: One is that the resulting Nash equilibrium may not exist, due to the nonconvexity in each player’s problem; the other is that such a nonconvex Nash g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2011